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1. INTRODUCTION 

In modern genetic engineering, there is always development towards better ways for therapies of different 
diseases in the most efficient way. Manipulation of gene carriers i.e. DNA and RNA aim to either add, delete 
or modify the information carried by the carriers in such a way that either the disease can be cured or 
prevented by even happening 1.  

Editing of the genome has been proven important in many fields and thus is one of the most researched 
zones to introduce or cut any of the genes of interest to work out the result of interest. 1970-80 was a golden 
time for the discovery and usage of restriction enzymes to cut DNA at specific sequences and introducing 
that sequence in host cells. 

After these important discoveries, another valuable discovery was Double Strand Breaks (DBS) at a specific 
sequence, which revolutionized the genetic recombination technologies 2.  
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Genetic engineering approaches use the nucleases to cut the DNA. If we look at a brief history of mammalian 
genetic recombination than three classes of endonucleases, seem very important. All of these classes have 
the same action of working i.e. they produce a cut in both the strands of DNA at their respective sequence 
or site3. 

These classes include: 

• Meganucleases (recognize long stretches). 

• ZFN (zinc finger nucleases, recognize triple DNA code). 

• TALEN (transcription activator-like effector nucleases, recognize original base). 

• CRISPR (clustered regularly interspaced short palindromic repeats, determine PAM sequence)4. 

• These fragments produced are then ligated by two techniques. 

• NHEJ (Non-homology end joining, result in small insertions or deletions in DNA). 

• HDR (Homology directed repair, result in precise recombination)2. 

1.1 CRISPR-Cas system 

It was discovered in 1987 and after the discovery of similar sequences in other microbes, the acronym was 
devised in 2002. These sequences are present as direct repeats that are separated by specific Spacers 
(variable sequence stretches between two repeat sequences). Spacer regions are responsible for 
coordinating with the foreign DNA inserted as either phage DNA, transposable elements or a plasmid 2. 

CRISPR sequences are present along with CRISPR associated proteins called Cas genes which are present 
adjacent to the spacer regions. These associated sequences encode for the proteins like; nucleases, 
polymerases, helicases, and ligases. 

CRISPR also has some other proteins associated called, repeat-associated mysterious proteins (RAMP) 5.  

The size of CRISPR repeats is 23-21bp while the size of the spacer region is 47-72bp. Within a specific locus, 
the sequence remains conserved but varies in different species. Repeat-spacer units are up to 375 but the 
commonly present units are less than 50. This sequence may be present in more than one locus, which makes 
it a huge part of the total genome of microbes. The presence of CRISPR is mostly in the chromosomal DNA 
but it is also reported in plasmid DNA6.  

Crispr contains a leader sequence, which is present upstream to the first repeat and may act as a promoter 
sequence for the transcription of pre- CRISPR RNA. This RNA is then processed and cleaved to produce rather 
smaller cr RNA. The processing of the RNA may differ from specie to specie, i.e. in E.coli, proteins called 
Cascade CRISPR-associated complex for antiviral defense) cleaves the RNA while in Pyrococcus, proteins 
called Cas 6 act as the nuclease. All the CRISPR works along with Cas as inactivation of these proteins result 
in loss of immunity against phages 7. 

1.2 History 

CRISPR stands for “clustered regularly interspaced palindromic repeats”. The new endonuclease, which is the 
active research in genetic engineering, is CRISPR/ Cas 8. It was discovered first in 1987 in E. coli during its 
genetic analysis, but due to limited resources at that time, the functions of these sequences were unknown. 
The first observation of the repeats was in Archaea in 1993, and preceding this it was also discovered in the 
bacterial genome in a conserved manner. The presence of a conserved sequence repeats in more than one 
domain was an astounding discovery 9. The loci for CRISPR has been found in almost 90 of the archea and 
40% of bacteria. During evolution, as a basis of adaptive immunity, this loci has been propagated into 
prokaryotes.  

In 2005, it was reported that these sequences have spacer DNA similar to DNA of phages, which were thought 
to be involved in the adaptive immunity of these microbes. In 2007, further research was converged towards 
another endonuclease, which works along with CRISPR and explains the function much more simply, called 
the Cas 9 protein. After this, guide RNA was mixed with Cas 9 to make precise cuts in DNA, which made it a 
new genetic manipulation tool for the new era2, 9.  
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1.3 RNA-mediated immunity 

Microbes are always taking up foreign DNA either in their reproduction methods or by injection of phage 
DNA. To maintain the integrity of the genetic materials, it is necessary to be able to differentiate self-DNA 
from foreign DNA even when it has been integrated into the DNA. It can either be one by blocking the 
absorption of foreign DNA or by cleaving it through different methods. CRISPR is the newly discovered tool 
present in microbes. Microbe’s immunity is related to the presence of CRISPR sequences, which can cleave 
and bind the DNA at specific sequences.  

There are 3 basic steps of the adaptive immunity produced in microbes: 

1. Adaptation: The foreign DNA injected by the phage is cleaved and integrated into the CRISPR array 
through the endonuclease that works along with the system. 

2. Expression: The integrated DNA translate along with the original DNA making crRNA (CRISPR RNA) which 
interacts with Cas effector nuclease and assemble to form a surveillance complex. 

3. Interference: The complex has endonuclease activity and the sequence of the phage DNA to guide the 
activity, so now when a phage attack, these complexes can provide adaptive immunity against it9, 10.  

4. It was shown in Streptococcus thermophilus in 2007 that by alteration of CRISPR sequences in the 
genome, phage resistance was produced. To justify this, the addition and deletion of specific spacer 
regions was done in the laboratory, which produced immunity and caused a loss of immunity 
respectively. 

 
2. CLASSIFICATION 
2.1. Class 1 CRISPR–Cas systems 

The effector complex of this system is multi-subunit. It includes type 1, type 3 and type 4  Cas systems. 

2.1.1. Type I CRISPR–Cas systems 

They contain Cas 3 genes or their variants encoding a single-stranded DNA stimulated by helicase, which can 
show its activity on DNA-DNA and DNA-RNA interactions. It includes seven subtypes i.e. Type I A – F and 
Type I U. 

2.1.2. Type III CRISPR–Cas systems 

They contain Cas 10 genes, which encodes a multi-domain protein of which one domain is called a palm 
domain. All the loci also contain a rather smaller sub-unit having Cas 5 and Cas 7 genes. It includes 2 subtypes 
i.e. Type III-A and Type III B. 

2.1.3. Putative type IV CRISPR–Cas systems 

A reported and uncharacterized system is also present in the plasmids of the microbes called type IV. They 
are present far from the CRISPR array and lack Cas 1 and Cas 2 genes. They can make a surveillance complex 
but its larger subunit is mostly present in a partially degraded form. 

2.2. Class 2 CRISPR–Cas systems 

The surveillance complex formed by this system is a single subunit and includes 2 subclasses i.e. type II and 
type V. 

2.2.1. Type II CRISPR–Cas systems 

The gene present in this system is by far the simplest and most commonly used, called, Cas 9 protein, which 
can form a surveillance complex to cleave the target DNA. This system also contains Cas 1 and Cas 2 genes. 
The system is divided into 3 subtypes i.e. II-A and II-B and II-C.  

2.2.2. Putative type V CRISPR–Cas systems 

It contains a protein called cpf1, which combines with an adaptor molecule to make a single subunit 
surveillance complex 9. 
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2.2.3 CRISPR/Cas 9 

Zinc finger nucleases were used as genetic editing tool until 2013 11 along with TALENS 12. The new era of 
genetic engineering started with the discovery of the CRISPR tool for genome editing. There are further 
classes of CRISPR out of which the most commonly used class is type 2 which work along the CRISPR 
associated protein called Cas 9 obtained from Streptococcus pyogenes 13.  

The CRISPR system works by cleaving the foreign DNA by using the nuclease domains of the associated 
proteins in specific sequences only, these cleaved sequences are the integration between the repeat 
sequences as “spacers” 14. The system works by the transcription of these regions in which the crRNA has 
both original and the foreign DNA transcribed into one. Further processing takes place by the interference of 
crRNA to TrcrRNA which will then make a complex with Cas 9 15. 

Cas 9 is a multi-subunit protein with two nuclease domains called HNH and RuvC like domains. The protein 
edit genome by producing double-stranded cuts by the interference of the two-nuclease domains 16. Cas 9 
will produce a cleavage in the foreign DNA at specific sequences called protospacers 14. The recognition of 
the specific sequences is done by the presence of some conserved sequences that are present downstream 
to the DNA that is to be cleaved. These conserved sequences are called protospacer-adjacent motif (PAM) 
having a sequence of 5′-NGG-3′ 13, 17 but in rare cases may also be NAG 18. The cleavage produced by these 
nucleases are highly specific and this is due to the presence of Seed Sequences that are present upstream to 
the PAM sequence. This sequence must be complementary between the DNA and RNA for the specificity 19.  

3. CRISPR/CAS9 SPECIFICITY 

Initially, a 20nt sequence presence in gRNA was considered important for a sequence-specific cut but later 
on, it was discovered that the presence of a smaller sequence upstream to the DNA that is to be targeted is 
important for specific cleavage, and was called the Seed Sequence 13, 20, 21. There is needed a perfect base 
pairing between the RNA (gRNA) and DNA to produce a specific cut but in case of presence of an extra-base 
in DNA will cause the production of a bulge in DNA while in case of a missing base the bulge will be produced 
in the gRNA which can result in an off-target cleavage 22. 

To increase specificity, there are many strategies applied to the system. The easiest and used strategy is to 
design gRNA accordingly to guide a specific cut in the DNA. There are bioinformatic tools available for 
designing (i.e CHOPCHOP (https://chopchop.rc.fas.harvard.edu) http://tools.genome-engineering.org, 
http://zifit.partners.org, and www.e-crisp.org) 23, 24, 25. As CRISPR work on complete base pairing for 
specificity, sequence analysis can be done to give higher predictability 26. Also, this system is very easily re-
programmed, so by trial and error, accurate results can be obtained rather easily 18. Another way to lower 
the off-target cleavage is to control the expression of the nuclease as a higher concentration of Cas 9 and 
gRNA can also be a reason for lower specificity 18, 27, 28. 

In the case of mutation in the ruvC domain can mutate it to produce a single cut (nick) production. A pair of 
sgRNA is used to guide Cas 9 nuclease to produce a single-stranded cut in both the strands of DNA 
simultaneously will produce a double-stranded cut with staggered ends 8. By this strategy, precise cleavage 
can be produced in both the DNA strands as compared to the wild type of Cas 9 i.e. non-mutated. This 
strategy has been proved to be more precise in human and mice models 29, 30, 31. Although this has proved a 
very precise strategy, it can still cause other mutations. To overcome this problem, mutated Cas 9 was fused 
with Fokl nucleases, which lower the mutation rate and increase the specificity of cuts simultaneously 32, 33. 

Another strategy is to add extra G residues at the 5′ end that can lower the chances of off-target cleavage 
but at the same time make them less active for actual cleavage while truncated gRNA lowered mutation and 
were more active at the target site. Truncated gRNA can also be complexed along with Cas 9 for more 
sensitivity 34. 

The rate of mutation can differ from cell to cell within a specie. For instance, based on WES the rate of 
mutations in cancer line cells is higher in comparison to pluripotent stem cells of humans 35, 36, 37. Similarly in 
rice, 11bp upstream to PAM a single nucleotide was mismatched and the rate was 5 times lower than that of 
a target mutation but when a seed sequence was provided then no off-target mutation was observed 38-43. 

http://tools.genome-engineering.org/
http://zifit.partners.org/
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4. APPLICATIONS 

4.1 Genome editing 

The most feasible tool for editing the genome, being used from 2013 is CRISPR. The most common way can 
be by adding a vector (like plasmid) having CRISPR/Cas 9 along with the crRNA expression which can produce 
the desired mutation in the genome 44, 45. 

The gene-editing has been done in multiple mammalian species and others i.e. humans, 46 drosophila, 47, 48, 49 
zebrafish 50 Bombyx mori 51 Caenorhabditis Elegans 52 and bacteria 53, 54. Many mutations can be produced 
simultaneously in different species only by the addition of different gRNA which makes this editing more 
feasible. Gene editing can also be done in many plants to add or delete specific characters i.e. in tobacco, 
Arabidopsis 55 and rice 56. 

4.2 Delivery methods 

Different carriers are used to deliver the desired material into the host cells. The induction of Cas9 in the 
target cells is a very important step for gene editing. The pay-load should not be degraded by the body and 
it must enter the nucleus of the cell. Cargo can be in the form of DNA, protein/ ribonucleoprotein or RNA. All 
these steps are dependent on the delivery method and the carrier used 57. Following are some important 
carriers for Cas9 that are being used in the laboratories: 

4.3 Viruses 

Viruses have been proved to be a promising delivery system as they can invade cells efficiently and can induce 
the production of the desired gene inside the host. If the replication gene is removed and replaced by any 
other transgene so that expression is produced without any replication in other cells 58. AAV (adeno-
associated vectors) are used most frequently for targeted delivery 59-61 but the maximum limit of DNA 
encapsulation of the virus is as low as 4.7kb thus the gRNA and Cas9 should be added in two different AAVs 
62. 

4.4 Non-viral 

Many non-viral delivery methods are being used which include physical methods, chemical modifications and 
encapsulation methods 63. These methods give more control to the delivery in sense of dosage, specificity, 
etc. 

4.5 Physical 

This technique induces a disruption in the physical barriers and a direct delivery to the target destination. It 
can be done by electroporation (in vitro) which uses an electric field to make the cell membrane porous 
temporarily so that DNA, RNA or protein material (bulky biomolecules) can enter the cell directly 64, 65. 

Another technique is hydrodynamic injections, which are an in vivo technique in which an intravenous 
injection injects a liquid at high pressure and volume, which makes temporary pores and biomolecules can 
enter the target. Until now, this technique is used only for small animals like mice in which an injection in the 
tail was used to inject the plasmids in heart, kidney, lungs and liver tissues 66, 67, 68. 

Similarly, microinjections can also be used to make a small piercing in the cell membrane and injecting the 
cargo directly in the cell 69. 

4.6 Chemical method 

It can be done either directly by the chemical modification i.e Cell-penetrating peptide combined with a 
nuclear localization signal in the cargo or by encapsulation of the cargo so that it’s not degraded by the body. 

4.7 Encapsulation 

Encapsulation methods can be used in the form of liposomes 70. An important lipid delivery system is 
lipofectamine 71, 72. This method can also use the encapsulation of polymers (biological/synthetic) 73. Recently, 
nucleic acid polymers are also been explored to be used as capsules for the delivery of Cas9 63. Many 
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nanoparticles are also used for delivery purposes i.e. gold nanoparticles, carbon nanoparticles, and silica 
nanoparticles. Among these, gold nanoparticles are used more frequently for the in vivo transfer of Cas974. 

5. REGULATION OF TRANSCRIPTION 

Expression of a gene can be regulated at the transcription level but the response produced by this will be 
irreversible. CRISPR/Cas 9 work by changing/disrupting the sited that control the transcription of a specific 
gene. A modified system is designed by this and is called CRISPR Interference i.e CRISPRi 76, 77. 

When mutated Cas 9 were complexed with activating and repressing domains along with gRNA, a precise 
activation and repression of a gene were observed due to regulation of transcriptional genes 78. Similarly, in 
another research using CRISPri, multiple gene activity was altered by regulating their transcriptional activity 
simultaneously. This system provides a novel approach to regulate gene expression without any alteration in 
the DNA 76. 

6. GENE THERAPY 

Gene therapy is the most advanced level of treatment that can cure the endogenous disease permanently by 
genome editing. This can be done by either removing the disease-causing gene or by adding some other gene 
to overcome or protect the effect of disease-causing mutation 79-81.  

In a mouse model by the gene-editing by CRISPR/Cas9 in DMD gene of the germline, almost all the somatic 
cells lost the disease-causing genes 82. 

In HIV infected cells, promotor of HIV-1 was cleaved by Cas9, which caused a lower expression of HIV. By a 
similar method, those viral genes that are already integrated into the genome can be cleaved to remove the 
infection causing genes by the help of gRNA 83. 

Induced pluripotent stem (iPS) cell production is also using the CRISPR system for editing of genome. When 
Cas9 is inserted along with gRNA, in a study, the DNMT3B gene was disrupted. As this gene on mutation was 
producing immunodeficiency, facial anomalies syndrome and centromeric instability, a disruption in the 
mutated gene caused a significantly lower expression of mutation 84. Similar results have also been obtained 
from patients affected by β-thalassemia 85. 

Many viral infections are also related to the production of cancer. In these cases, by removing these genes, 
cancer can be treated with gene therapy. For instance, cervical carcinoma lines of cells that are HPV-positive 
and Burkitt’s lymphoma line of cells that are EBV-positive have lost their proliferation and viral activity by 
CRISPR gene therapy 86. 

In other types of cancer (non-viral) that are caused by genetic mutations. CRISPR can edit the genome at 
genetic 87 and epigenetic level 88 to edit out the mutations. The mutated gene can also be switched off by 
regulating the transcription in the modified model of CRISPRi. 

7. APPLICATIONS OTHER THAN GENOME EDITING 

CRISPR system can also work by regulating the gene expression without directly editing the genome. It can 
bind to the proteins that are involved in gene expressions like polymerases or transcription factors. CRISPRi 
modification is based upon this binding of dCas, which can cause a knockout expression of a gene by 
controlling the transcription 77. 

When a mutation takes place in Cas9 and instead of double-stranded break, only a nick is produced in the 
DNA called nickase Cas9. This tool is used to directly replace A/T and G/C 89. In a recent study, it was reported 
that when nickase Cas 9 is complexed with APOBEC1 deaminase and UGI, there is no DSB produced and C is 
converted to T 90. A can also be converted to G by a novel complex of nickase with adenosine deaminase 91. 
By changing one base to another, amino acid coding codon can also change into stop codon by which the 
protein formation can be altered by the presence of an early stop codon 92. 

CRISPR also plays an important role in epigenetic regulation. The most common ways of regulation are DNA 
methylation, acetylation and modifications of histone and among these, the most common way is DNA 
methylation 93. dCas9 is used for locus-specific methylation by fusion of dCas9 with DNA methyltransferase 
enzyme 94. Also, by a similar approach, DNA demethylation is done by an enzyme called ten-eleven 
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translocation (TET) proteins. By fusion of these proteins with dCas9 produced more specific results and active 
transcription of the genes 95. 

Another important application of CRISPR is chromatin imaging of the live cell. dCas loaded with fluorescent 
proteins were targeted to the repeat regions of the DNA to produce chromatin image 96. With a similar 
approach, repeat regions of telomeres, as well as centromere, were targeted by dCas9 (labeled) to create a 
contrast image of chromatin 97. 

From an abscisic acid pathway, (plant) two protein domains that can make dimers i.e. ABI1 and PYL1 were 
taken and fused with dCas9, which forced the dimerization of the two proteins, which lead to a formation of 
a loops-like structure between promotor and enhancer region. This loop (induced) increased the expression 
of β-globin in hematopoietic cells97. 

8. CONCLUSIONS 

CRISPR is a relatively new technique for genetic engineering. Although there are many techniques that are 
being used already that are described here but still there are advances that are being developed. The basic 
concern is the off-target cuts by the system. Each technique described here also have shortcomings of their 
own, which should be overcome by new adaptations. This system is still evolving, and many modifications of 
the system are developing making the system to adapt to the new techniques. CRISPR is very sensitive 
technique so to obtain specific results special care must be taken to handle the system. 
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